3,090 research outputs found

    Development and Operation of the Astrophysics Data System

    Get PDF
    The Astrophysics Data System (ADS) provides access to astronomical bibliographic information, including references, abstracts, and full journal articles, as well as links to other on-line information sources like on-line electronic journals and on-line data. This section will first provide a brief history of the ADS, a general introduction of the current system, and a more detailed description of some of the parts of the ADS

    Obscuration by Gas and Dust in Luminous Quasars

    Get PDF
    We explore the connection between absorption by neutral gas and extinction by dust in mid-infrared (IR) selected luminous quasars. We use a sample of 33 quasars at redshifts 0.7 < z < 3 in the 9 deg^2 Bo\"otes multiwavelength survey field that are selected using Spitzer Space Telescope Infrared Array Camera colors and are well-detected as luminous X-ray sources (with >150 counts) in Chandra observations. We divide the quasars into dust-obscured and unobscured samples based on their optical to mid-IR color, and measure the neutral hydrogen column density N_H through fitting of the X-ray spectra. We find that all subsets of quasars have consistent power law photon indices equal to 1.9 that are uncorrelated with N_H. We classify the quasars as gas-absorbed or gas-unabsorbed if N_H > 10^22 cm^-2 or N_H < 10^22 cm^-2, respectively. Of 24 dust-unobscured quasars in the sample, only one shows clear evidence for significant intrinsic N_H, while 22 have column densities consistent with N_H < 10^22 cm^-2. In contrast, of the nine dust-obscured quasars, six show evidence for intrinsic gas absorption, and three are consistent with N_H < 10^22 cm^-2. We conclude that dust extinction in IR-selected quasars is strongly correlated with significant gas absorption as determined through X-ray spectral fitting. These results suggest that obscuring gas and dust in quasars are generally co-spatial, and confirm the reliability of simple mid-IR and optical photometric techniques for separating quasars based on obscuration.Comment: 5 pages, 3 figure

    Is the Compact Source at the Center of Cas A Pulsed?

    Get PDF
    A 50 ksec observation of the Supernova Remnant Cas A was taken using the Chandra X-Ray Observatory High Resolution Camera (HRC) to search for periodic signals from the compact source located near the center. Using the HRC-S in imaging mode, problems with correctly assigning times to events were overcome, allowing the period search to be extended to higher frequencies than possible with previous observations. In an extensive analysis of the HRC data, several possible candidate signals are found using various algorithms, including advanced techniques developed by Ransom to search for low significance periodic signals. Of the candidate periods, none is at a high enough confidence level to be particularly favored over the rest. When combined with other information, however (e.g., spectra, total energetics, and the historical age of the remnant), a 12 ms candidate period seems to be more physically plausible than the others, and we use it for illustrative purposes in discussing the possible properties of a putative neutron star in the remnant. We emphasize that this is not necessarily the true period, and that a follow-up observation, scheduled for the fall of 2001, is required. A 50 ksec Advanced CCD Imaging Spectrometer (ACIS) observation was taken, and analysis of these data for the central object shows that the spectrum is consistent with several forms, and that the emitted X-ray luminosity in the 0.1 -10 keV band is 10^{33}-10^{35}erg cm^{-2}sec^{-1} depending on the spectral model and the interstellar absorption along the line of sight to the source.Comment: 14 pages, 3 figures Submitted to ApJ 2001 June 2

    Thermal gravity, black holes and cosmological entropy

    Full text link
    Taking seriously the interpretation of black hole entropy as the logarithm of the number of microstates, we argue that thermal gravitons may undergo a phase transition to a kind of black hole condensate. The phase transition proceeds via nucleation of black holes at a rate governed by a saddlepoint configuration whose free energy is of order the inverse temperature in Planck units. Whether the universe remains in a low entropy state as opposed to the high entropy black hole condensate depends sensitively on its thermal history. Our results may clarify an old observation of Penrose regarding the very low entropy state of the universe.Comment: 5 pages, 2 figures, RevTex. v4: to appear in Phys. Rev.
    • …
    corecore